Batch Normalization and the impact of batch structure on the behavior of deep convolution networks

نویسندگان

  • Mohamed Hajaj
  • Duncan Fyfe Gillies
چکیده

Batch normalization was introduced in 2015 to speed up training of deep convolution networks by normalizing the activations across the current batch to have zero mean and unity variance. The results presented here show an interesting aspect of batch normalization, where controlling the shape of the training batches can influence what the network will learn. If training batches are structured as balanced batches (one image per class), and inference is also carried out on balanced test batches, using the batch’s own means and variances, then the conditional results will improve considerably. The network uses the strong information about easy images in a balanced batch, and propagates it through the shared means and variances to help decide the identity of harder images on the same batch. Balancing the test batches requires the labels of the test images, which are not available in practice, however further investigation can be done using batch structures that are less strict and might not require the test image labels. The conditional results show the error rate almost reduced to zero for nontrivial datasets with small number of classes such as the CIFAR10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding symmetries in deep networks

Recent works have highlighted scale invariance or symmetry present in the weight space of a typical deep network and the adverse effect it has on the Euclidean gradient based stochastic gradient descent optimization. In this work, we show that a commonly used deep network, which uses convolution, batch normalization, reLU, max-pooling, and sub-sampling pipeline, possess more complex forms of sy...

متن کامل

Dense Prediction on Sequences with Time-Dilated Convolutions for Speech Recognition

In computer vision pixelwise dense prediction is the task of predicting a label for each pixel in the image. Convolutional neural networks achieve good performance on this task, while being computationally efficient. In this paper we carry these ideas over to the problem of assigning a sequence of labels to a set of speech frames, a task commonly known as framewise classification. We show that ...

متن کامل

A 7.663-TOPS 8.2-W Energy-efficient FPGA Accelerator for Binary Convolutional Neural Networks

FPGA-based hardware accelerators for convolutional neural networks (CNNs) have obtained great attentions due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this paper, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a ...

متن کامل

Layer Normalization

Training state-of-the-art, deep neural networks is computationally expensive. One way to reduce the training time is to normalize the activities of the neurons. A recently introduced technique called batch normalization uses the distribution of the summed input to a neuron over a mini-batch of training cases to compute a mean and variance which are then used to normalize the summed input to tha...

متن کامل

Normalization Propagation: A Parametric Technique for Removing Internal Covariate Shift in Deep Networks

While the authors of Batch Normalization (BN) identify and address an important problem involved in training deep networks– Internal Covariate Shift– the current solution has certain drawbacks. For instance, BN depends on batch statistics for layerwise input normalization during training which makes the estimates of mean and standard deviation of input (distribution) to hidden layers inaccurate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07590  شماره 

صفحات  -

تاریخ انتشار 2018